1

Your cart is empty.

SQL Design Patterns
Sale

SQL Design Patterns

$ 34.95 


SQL Design Patterns
The professional Guide to SQL Programming

Vadim Tropashko      

Retail Price $49.95 /  £37.95 

Order now and save 30%.  Only $34.95

Note: This book is exclusively for professional SQL programmers and it IS NOT appropriate for novices and non-professionals.

ISBN
0-9776715-4-2
 
ISBN 13
978-0977671540
Library of Congress Number: 2006934082
264 pages
 Perfect bind - 9x7
PD 1007
Shelving: Database IT In-focus Series # 4

 

 

This indispensable SQL reference book is the first-of- its-kind to leverage the benefits of design patterns to relational database SQL queries.  Leveraging on the success of programming design patterns books, SQL guru Vadim Tropashko categorizes and describes all common SQL structures and design patterns.

This is an important book for programmers and managers alike.  Because SQL is a declarative language there are many ways to write any SQL query and convoluted and clumsy SQL syntax has become a maintenance nightmare.  Professional database programmers must understand the correct way to write SQL for complicated database queries, and managers must institute formal SQL coding standards to improve productivity and maintainability.

As relational databases structures become more complex, so do their SQL queries.  Complex SQL becomes difficult to understand and maintain, especially with novices who pile-on nested subqueries, and  all SQL programmer must learn rudimentary SQL theory, which classifies known SQL solutions into common patterns. 
SQL design patterns greatly improve the quality and productivity of systems development projects because SQL design patterns form a "best practices" foundation for all relational database queries.  The SQL programmers benefit from using SQL design patterns since all query structures are standardized with common approaches, and management benefits by having standardized and maintainable SQL syntax.
This book is both pragmatic and academic, a worthy academic book that emphasizes theoretical foundation for almost every type of SQL query problem. Most of the material has accompanying figures that help visualizing the problem.

This is not a book for casual programmers or dilettantes. It is specifically created for professional SQL developers who need to solve complex problems using common SQL idioms.

 

* Learn the SQL best practices used by successful professionals.
* Improve productivity and maintainability with SQL coding standards.

* Learn relational division, set joins, user-defined aggregates, pivot, and many other advanced patterns.

* Learn how SQL Design Patterns create common solutions.

* See proven best practices for SQL coding styles.
* Learn (literally!) countless ways to implement integer generators in SQL.

* Understand how to perform complex data manipulation with SQL advanced predicates.

* Leverage materialized views to implement ANSI SQL assertions.

* Explore hierarchical SQL queries.

SQL is the de-facto query language for all databases and SQL is the topic of thousands of books. However, never before has anyone taken the principle of “Design Patterns” and applied them to SQL programming. Unlike programming languages, SQL is non-procedural and declarative, and this book melds two wildly popular technologies into a cohesive whole.

On internet SQL forums it is not uncommon for people to ask the same question over and over again. Patterns introduce colorful names where developers otherwise have to refer to the answer by URL. “Look, that’s a singleton!” is a common reply in procedural programming community.

Historically, SQL is a very successful language, with more usage than any procedural programming language. This might be surprising to a newcomer who generally find SQL a little bit old fashioned compared to "modern" programming languages. It’s almost as old as C (which spawned at least 3 newer generation languages already) and it looks like COBOL, why isn't it obsolete yet? Let assure the reader that this appearance is misleading. Under the cover of sloppy and archaic syntax we find a high abstraction language.

SQL is many things to many people.  To the beginner, the sloppy and archaic declarative syntax is nothing more than a data query language.  But to the professional, SQL offers a robust abstraction level that can be used to solve a host of complex data manipulation problems.

Understanding SQL design patterns is critical to the success of every professional SQL developer.  For development best practices it's critical that SQL developers employ common design patterns with SQL so that they have a framework for common SQL solutions.

Predicates, joins, subqueries and aggregation are SQL basics. The advanced part of SQL learning curve demands a SQL programmer to develop the ability to recognize complex patterns. Whether you are working on a small project or a multi-million dollar system, it's critical that developers understand the common design patterns with SQL so that they have a framework for common SQL solutions. Beyond a certain point, the skill of piling up subqueries doesn’t pay off, and one has to study some rudimentary theory, which classifies known SQL solutions into common design patterns.

Programming books in general are poorly illustrated, or illustrations have little to relate to the book topics. "SQL Design Patterns" is an exception. Most of the material has accompanying figures that help visualizing the problem.

SQL Design Patterns Book Preface

SQL is a very successful language. Yet, is there a place for an advanced SQL book in the era of “Learn Technology X in 10 Minutes”? Indeed, the tech industry today emphasizes a shallow knowledge of a huge number of technical skills, rather than deep knowledge of a more specialized skill. That’s how workers have been getting jobs, by knowing a tiny bit of many skills employers might need. Someone who knows how to use SQL in an advanced way does not have a proportionate advantage in getting a job over someone who knows only the basics. If this second person, however, also knows J2EE, XSLT, Ajax, Flash, or any other flash in the pan to a similarly basic level, then he or she has a greater employment advantage.
The major flaw of this line of reason is equating the sophistication of SQL to these rather unsound technologies. This might be surprising to a newcomer who generally finds SQL a little bit old fashioned compared to the “modern” programming languages. It is almost as old as C, which spawned at least 3 newer generation languages already, and it looks like COBOL, so why isn’t it obsolete yet? Let me assure you that this appearance is misleading. Under the cover of sloppy and archaic syntax, a high abstraction language is found.
SQL programming is very unusual from the procedural perspective: there is no explicit flow control, no loops and no variables either to apply operations to or to store intermediate results into. SQL heavily leverages predicates instead, which elevates it to Logic Programming. Then, the grouping and aggregation syntax blends naturally into this already formidable logic foundation. Anybody who rediscovers that matrix or polynomial multiplication can be written in just three lines of code has a long lasting impression.
These ingredients that make SQL unique partially explain why advanced SQL programming does not revolve around syntax features, but demands a SQL programmer to develop an ability to recognize complex patterns. Yes, beyond a certain point a skill of piling up subqueries does not give much of a return and one has to study some rudimentary theory, which classifies known SQL solutions into patterns.
Patterns in procedural programming became popular a decade ago, originated with a landmark book by Gamma et. al. Each pattern has its name so that developers could quickly refer to it by just a name. “Oh, that’s a singleton!” instead of a lengthy description and often accompanied with a code snippet.
Patterns received a sour reception in a high abstraction language community. The prevailing perception was that patterns are a signature of low level programming. When a programmer sees patterns in her programs, it is a sign of trouble. The shape of a program should reflect only the problem it needs to solve. Any other regularity in the code indicates that abstractions are not powerful enough.
In reality, however, any language is quite limited in its abstraction power, declarative languages notwithstanding. Sooner or later we have to find workarounds for those limitations. This is how SQL patterns were born!
Patterns greatly improve our communication capabilities. On internet SQL forums it is not uncommon for people to ask the same question over and over again. Pattern names such as Interval coalesce or Relational division, for example, rarely surface in the discussion thread, giving way to numerous reply messages pointlessly competing to see who can find a query that does not look intimidating. Patterns allow succinct replies like this: “Lookup the Interval coalesce method in the … textbook”.
Establishing common pattern names is the first goal of this book. Most of the patterns have standard names: Skyline query, Pivot, or Nested Intervals, for example. Few do not; we have to work out a name, like the fancy sounding Discrete interval sampling, for example.
When presenting SQL patterns in this book I decided to dismiss the standard template form. Template is perfect for reference material, but is a nuisance for a textbook. More important than this stylistic comment, however, is the fact that fairly soon you might stumble into patterns that require little familiarity with undergraduate level math. Don’t be discouraged, however: as John Garmany suggested, many topics start making sense on second reading. In the Indicator Functions section, for example, you may want to skip the theory, first, rewind to the sample problem and SQL solutions, then, rollback to the theory.
List of SQL Design patterns:

 Counting  Conditional summation  Integer generator  String/Collection decomposition  List Aggregate  Enumerating pairs  Enumerating sets  Interval coalesce  Discrete interval sampling  User-defined aggregate  Pivot  Symmetric difference  Histogram  Skyline query  Relational division  Outer union  Complex constraint  Nested intervals  Transitive closure  Hierarchical total .